Title of Document : CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHERE - VEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER

نویسندگان

  • Ji Sun Kang
  • Inez Fung
چکیده

Title of Document: CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHEREVEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER Ji Sun Kang, Doctor of Philosophy, 2009 Directed By: Professor Eugenia Kalnay Department of Atmospheric and Oceanic Science We develop and test new methodologies to best estimate CO2 fluxes on the Earth’s surface by assimilating observations of atmospheric CO2 concentration, using the Local Ensemble Transform Kalman Filter. We perform Observing System Simulation Experiments and assimilate simultaneously atmospheric observations and atmospheric carbon observations, but no surface fluxes of carbon. For the experiments, we modified an atmospheric general circulation model to transport atmospheric CO2 and coupled this model with a dynamical terrestrial carbon model and a simple physical land model. The state vector of the model prognostic variables was augmented by the diagnosed carbon fluxes CF, so that the carbon fluxes were updated by the background error covariance with other variables. We designed three types of analysis systems: a C-univariate system where CF errors are coupled only with CO2, a multivariate system where all the error covariances are coupled, and a one-way multivariate analysis where the wind is included in the carbon error covariance, but there is no feedback on the winds. With perfect model experiments, the one-way multivariate analysis has the best results in CO2 analysis. For the imperfect model experiments, we applied techniques of model bias correction and adaptive inflation. With those, we obtained a high-quality analysis of surface CO2 fluxes. Furthermore, the adaptive inflation technique also provides a good estimate of observation errors. A new approach in the multivariate data assimilation with “variable localization”, where the error correlations between unrelated variables are zeroed-out further improved the multivariate analyses surface CO2 fluxes. We note that with the simultaneous assimilation of winds and carbon variables, we are able to transport atmospheric CO2 with winds as well as, for the first time, couple their error covariances. As a result, the multivariate systems perform well, and do not require any kind of a-priori information that should be pre-calculated by independent observations or model simulations. The many new techniques that we developed and tested put us on a solid basis to tackle the assimilation of real atmospheric and CO2 observations, a project being carried out collaboratively by Dr. Junjie Liu under the direction of Prof. Inez Fung at

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A global reanalysis of vegetation phenology

[1] Simulations of the global water and carbon cycle are sensitive to the model representation of vegetation phenology. Current phenology models are empirical, and few predict both phenological timing and leaf state. Our previous study demonstrated how satellite data assimilation employing an Ensemble Kalman Filter yields realistic phenological model parameters for several ecosystem types. In t...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

A Simulation Study Using a Local Ensemble Transform Kalman Filter for Data Assimilation in New York Harbor

Data assimilation approaches that use ensembles to approximate a Kalman filter have many potential advantages for oceanographic applications. To explore the extent to which this holds, the Estuarine and Coastal Ocean Model (ECOM) is coupled with a modern data assimilation method based on the local ensemble transform Kalman filter (LETKF), and a series of simulation experiments is conducted. In ...

متن کامل

Assimilation of Remotely-Sensed Leaf Area Index into a Dynamic Vegetation Model for Gross Primary Productivity Estimation

Quantitative estimation of the magnitude and variability of gross primary productivity (GPP) is required to study the carbon cycle of the terrestrial ecosystem. Using ecosystem models and remotely-sensed data is a practical method for accurately estimating GPP. This study presents a method for assimilating high-quality leaf area index (LAI) products retrieved from satellite data into a process-...

متن کامل

Initialization of an ENSO Forecast System Using a Parallelized Ensemble Filter

As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009